## Topology Of Surfaces

**Author**: L.Christine Kinsey

**Publisher:**Springer Science & Business Media

**ISBN:**1461208998

**File Size**: 60,18 MB

**Format:**PDF, ePub, Mobi

**Read:**896

" . . . that famous pedagogical method whereby one begins with the general and proceeds to the particular only after the student is too confused to understand even that anymore. " Michael Spivak This text was written as an antidote to topology courses such as Spivak It is meant to provide the student with an experience in geomet describes. ric topology. Traditionally, the only topology an undergraduate might see is point-set topology at a fairly abstract level. The next course the average stu dent would take would be a graduate course in algebraic topology, and such courses are commonly very homological in nature, providing quick access to current research, but not developing any intuition or geometric sense. I have tried in this text to provide the undergraduate with a pragmatic introduction to the field, including a sampling from point-set, geometric, and algebraic topology, and trying not to include anything that the student cannot immediately experience. The exercises are to be considered as an in tegral part of the text and, ideally, should be addressed when they are met, rather than at the end of a block of material. Many of them are quite easy and are intended to give the student practice working with the definitions and digesting the current topic before proceeding. The appendix provides a brief survey of the group theory needed.

## Topology Of Surfaces Knots And Manifolds

**Author**: Stephan C. Carlson

**Publisher:**John Wiley & Sons Inc

**ISBN:**

**File Size**: 77,36 MB

**Format:**PDF, Docs

**Read:**2641

Master the basic ideas of the topology of manifolds TOPOLOGY OF SURFACES, KNOTS, AND MANIFOLDS offers an intuition-based and example-driven approach to the basic ideas and problems involving manifolds, particularly one- and two-dimensional manifolds. A blend of examples and exercises leads the reader to anticipate general definitions and theorems concerning curves, surfaces, knots, and links--the objects of interest in the appealing set of mathematical ideas known as "rubber sheet geometry." The result is a text that is accessible to a broad range of undergraduate students, yet will provides solid coverage of the mathematics underlying these topics. Here are some of the features that make Carlson's approach work: A student-friendly writing style provides a clear exposition of concepts.mathematical results are presented accurately and main definitions, theorems, and remarks are clearly highlighted for easy reference.Carefully selected exercises, some of which require hands-on work on computer-aided visualization, reinforce the understanding of concepts or further develop ideas.Extensive use of illustrations helps the students develop an intuitive understanding of the material.Frequent historical references chronicle the development of the subject and highlight connections between topology and other areas of mathematics.Chapter summary sections offer a review of each chapter's topics and a transitional look forward to the next chapter.

## Basic Topology

**Author**: M.A. Armstrong

**Publisher:**Springer Science & Business Media

**ISBN:**1475717938

**File Size**: 56,69 MB

**Format:**PDF, ePub, Mobi

**Read:**1885

In this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for their calculating. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and applications involving point-set, geometric, and algebraic topology. Over 139 illustrations and more than 350 problems of various difficulties help students gain a thorough understanding of the subject.

## Classical Topology And Combinatorial Group Theory

**Author**:

**Publisher:**Springer Science & Business Media

**ISBN:**1468401106

**File Size**: 35,61 MB

**Format:**PDF, ePub, Mobi

**Read:**9295

In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does not understand the simplest topological facts, such as the reason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical develop ment where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recrea. ions like the seven bridges; rather, it resulted from the visualization of problems from other parts of mathematics complex analysis (Riemann), mechanics (poincare), and group theory (Oehn). It is these connections to other parts of mathematics which make topology an important as well as a beautiful subject.

## Differential Geometry Of Curves And Surfaces

**Author**: Kristopher Tapp

**Publisher:**Springer

**ISBN:**3319397990

**File Size**: 53,81 MB

**Format:**PDF, Mobi

**Read:**2366

This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to cartography. Evolutes, involutes and cycloids are introduced through Christiaan Huygens' fascinating story: in attempting to solve the famous longitude problem with a mathematically-improved pendulum clock, he invented mathematics that would later be applied to optics and gears. Clairaut’s Theorem is presented as a conservation law for angular momentum. Green’s Theorem makes possible a drafting tool called a planimeter. Foucault’s Pendulum helps one visualize a parallel vector field along a latitude of the earth. Even better, a south-pointing chariot helps one visualize a parallel vector field along any curve in any surface. In truth, the most profound application of differential geometry is to modern physics, which is beyond the scope of this book. The GPS in any car wouldn’t work without general relativity, formalized through the language of differential geometry. Throughout this book, applications, metaphors and visualizations are tools that motivate and clarify the rigorous mathematical content, but never replace it.

## Topology

**Author**: Klaus Jänich

**Publisher:**Springer

**ISBN:**9781461270188

**File Size**: 27,63 MB

**Format:**PDF, Mobi

**Read:**2937

Contents: Introduction. - Fundamental Concepts. - Topological Vector Spaces.- The Quotient Topology. - Completion of Metric Spaces. - Homotopy. - The Two Countability Axioms. - CW-Complexes. - Construction of Continuous Functions on Topological Spaces. - Covering Spaces. - The Theorem of Tychonoff. - Set Theory (by T. Br|cker). - References. - Table of Symbols. -Index.

## Modeling Of Curves And Surfaces With Matlab

**Author**: Vladimir Rovenski

**Publisher:**Springer Science & Business Media

**ISBN:**0387712771

**File Size**: 57,99 MB

**Format:**PDF, ePub

**Read:**6710

This text on geometry is devoted to various central geometrical topics including: graphs of functions, transformations, (non-)Euclidean geometries, curves and surfaces as well as their applications in a variety of disciplines. This book presents elementary methods for analytical modeling and demonstrates the potential for symbolic computational tools to support the development of analytical solutions. The author systematically examines several powerful tools of MATLAB® including 2D and 3D animation of geometric images with shadows and colors and transformations using matrices. With over 150 stimulating exercises and problems, this text integrates traditional differential and non-Euclidean geometries with more current computer systems in a practical and user-friendly format. This text is an excellent classroom resource or self-study reference for undergraduate students in a variety of disciplines.

## How Surfaces Intersect In Space

**Author**: J. Scott Carter

**Publisher:**World Scientific

**ISBN:**9789810220662

**File Size**: 58,43 MB

**Format:**PDF, ePub, Mobi

**Read:**3389

This marvelous book of pictures illustrates the fundamental concepts of geometric topology in a way that is very friendly to the reader. It will be of value to anyone who wants to understand the subject by way of examples. Undergraduates, beginning graduate students, and non-professionals will profit from reading the book and from just looking at the pictures.

## Elementary Topics In Differential Geometry

**Author**: J. A. Thorpe

**Publisher:**Springer Science & Business Media

**ISBN:**1461261538

**File Size**: 78,53 MB

**Format:**PDF

**Read:**4972

In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.

## Geometry Of Surfaces

**Author**: John Stillwell

**Publisher:**Springer Science & Business Media

**ISBN:**1461209293

**File Size**: 64,86 MB

**Format:**PDF, Docs

**Read:**5285

The geometry of surfaces is an ideal starting point for learning geometry, for, among other reasons, the theory of surfaces of constant curvature has maximal connectivity with the rest of mathematics. This text provides the student with the knowledge of a geometry of greater scope than the classical geometry taught today, which is no longer an adequate basis for mathematics or physics, both of which are becoming increasingly geometric. It includes exercises and informal discussions.